This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

NEW ORGANOPHOSPHORUS COMPOUNDS FROM 2-HYDROXY-4-AMINO BENZOIC ACID

Afaf A. Fahmy^a

^a National Research Centre, Cairo, Egypt

To cite this Article Fahmy, Afaf A.(1991) 'NEW ORGANOPHOSPHORUS COMPOUNDS FROM 2-HYDROXY-4-AMINO BENZOIC ACID', Phosphorus, Sulfur, and Silicon and the Related Elements, 63: 1, 81 — 86

To link to this Article: DOI: 10.1080/10426509108029430 URL: http://dx.doi.org/10.1080/10426509108029430

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

NEW ORGANOPHOSPHORUS COMPOUNDS FROM 2-HYDROXY-4-AMINO BENZOIC ACID

AFAF A. FAHMY

National Research Centre, Dokki, Cairo, Egypt

(Received January 28, 1991; in final form May 28, 1991)

Dimethyl and diethyl phosphite add to carbon-nitrogen double bond in compound 2-hydroxy-4-(2-thenylidene) amino benzoic acid \mathbf{III}_b to give the corresponding phosphonates \mathbf{IV}_a and \mathbf{IV}_b . 1,3,2,4-Dithiadiphosphetane-2,4-disulfides \mathbf{I}_a and \mathbf{II}_b react with 2-hydroxy-4-amino benzoic acid \mathbf{II} and \mathbf{III}_b to give cyclic compounds $\mathbf{V}_{a,b,c}$ and \mathbf{V}_d , respectively. The given structures were based upon analytical, chemical and spectroscopic results.

Key words: Schiff base; alkył phosphite; 2-hydroxy-4-amino benzoic acid; Lawesson and Japanese reagents.

It has been found that 2,4-bis (4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide, Lawesson reagent (LR), I_a and 2,4-bis (phenyl thio)-1,3,2,4-dithiadiphosphetane, 2,4-disulfide Japanese reagent (JR), I_b are potent thiating agents for diverse carbonyl compounds e.g. ketones,¹ esters² and lactans.³ The reagents LR and JR easily available and undergo also ring-closure reactions with substrates containing two functional groups.⁴⁻⁷

$$R = -S$$

R

R

R

R

OCH3

To extend the use of $I_{a,b}$ to the other bifunctional substrates, its reactions with 2-hydroxy-4(2-thenylidene) aminobenzoic acid III_b , have been investigated and found to give new phosphorus heterocycles. Our results are reported in this paper.

II reacted with aromatic aldehydes, namely, 4-methoxy benzaldehyde and 2-thiophen aldehyde to yield III_a and III_b .

HOOC

$$RCHO$$
 $RCHO$
 $RCHO$

The IR spectrum of compound $\mathbf{HI_a}$ (using KBr), as an example, showed the characteristic bands $1650 \, \mathrm{cm^{-1}}$ ($\mathrm{C}=\mathrm{N}-$), $1600 \, \mathrm{cm^{-1}}$ (aromatic band) and $2840-2820 \, \mathrm{cm^{-1}}$ ($\mathrm{-OCH_3}$). The ¹H NMR showed aromatic protons in the region δ 7.8–8.8 ppm (7H, multiplet), at δ 3.3 ppm (O—CH₃, s) and the methine proton at δ 4.1 ppm.⁹

Compound $\mathbf{III_b}$ was allowed to react with dimethyl phosphite (DMP) and diethyl phosphite (DEP) in absence of solvent at 100°C to give the phosphonates adducts $\mathbf{IV_a}$ and $\mathbf{IV_b}$, ^{10,11} which were confirmed by elemental analyses (Table I), molecular weight determination (MS), IR and ¹H-NMR spectra.

HOOC

$$O$$
 P
 OR
 OR

The mechanism for the addition of HP(O)(OR)₂ to the C=N bond is probably nucleophilic attack on the C=N bond on the phosphite. The IR spectrum of IV_b (using KBr) as an example was quite consistent with the assigned structure. It showed bands at $3400 \, \text{cm}^{-1}$ (—NH), $1600 \, \text{cm}^{-1}$ (aromatic band), $1250 \, \text{cm}^{-1}$ (P=O) and at $1050 \, \text{cm}^{-1}$ (P=O-C₂H₅). Its NMR spectrum showed aromatic protons in the region $\delta 8.0$ –9.0 ppm (6H), methine proton at $\delta 4.3$ ppm, signals at $\delta 3.6$ ppm (4H, ethoxy CH₂, q), $\delta 1.6$ ppm (6H, ethoxy CH₃, t) and the NH proton appears as a doublex of doublets in the region $\delta 12.0$ –12.5 ppm.

By refluxing II and III_b in boiling dry toluene with LR, I_a and JR, I_b new phosphorus heterocycles V_a , V_b , V_c and V_d are formed respectively.

HOOC

$$HO$$
 NR
 $+$
 R'
 P
 S
 P

The structures of the aforementioned compounds were confirmed by elemental analyses (Table I), molecular weight determination MS, IR, ¹H-NMR and ³¹P NMR spectra.

A possible explanation of the reaction of II and III_b with I_a and I_b can be illustrated in "Scheme A".

Scheme A

v a,
$$R = H_2$$
, $R' = -S \longrightarrow 0 \text{ CH}_3$
b, $R = H_2$, $R' = -S \longrightarrow 0 \text{ CH}_3$
c, $R = -\frac{1}{C} \longrightarrow 0 \text{ CH}_3$
d, $R = -\frac{1}{C} \longrightarrow 0 \text{ CH}_3$

Scheme A (Continued)

Taking V_a and V_d as examples, the elemental analyses of V_a corresponded to $C_{14}H_{12}NS_3PO_2$, the IR spectrum (using KBr) revealed the OH and COOH absorption bands and showed absorption bands at 3400 cm⁻¹ due to NH₂, at 650 cm⁻¹ due to $S_{P=S}$ and showed strong absorption bands in the region 1600–1500 cm⁻¹ due to aromatic C=C stretching vibrations. The NMR spectrum of V_a in Demso showed signals at δ 3.8 ppm (3H, OCH₃), at δ 11.4 ppm (2H, NH₂) and the aromatic protons gave multiplet at δ 6.0–7.6 ppm region (7H, multiplet). The MS spectrum showed m/e 353 (M⁺).

The elemental analyses of V_d corresponded to $C_{18}H_{12}NS_5PO$, the IR spectrum (using KBr) was identical to the proposed structure, it showed absorption bands at 2900 cm⁻¹ due to —CH, at 650 cm⁻¹ due to $P_{--}S$ and 1600–1500 cm⁻¹ due to the aromatic $C_{--}C$ vibrations. The NMR spectrum showed signals at δ 1.2 ppm due to (1H, CH, singlet) and at δ 6.4–7.8 ppm due to the aromatic protons (8H, multiplet). The MS spectrum showed m/e 449 (M⁺). In the ³¹P NMR spectrum the chemical shift of V_d was found at 24 ppm.

EXPERIMENTAL

All melting points were uncorrected. Toluene and petroleum ether were dried over sodium. Dialkyl phosphites were prepared according to established procedure 12 and twice distilled before use. The reagents I_a and I_b were freshly prepared according to established procedure and twice crystallized before use. 13,14

The IR spectra (run in KBr and expressed in cm⁻¹) were recorded with a Beckman 4220 Infracord Model and the ¹H-NMR spectra were measured (in CDCl₃ or DMSO-d₆ and expressed in the δ scale) at 60 MHz or 90 MHz on a Varian instrument using TMS as an internal standard. The mass spectra were performed at 70 eV using a Varian MAT 112 Mass Spectrometer.

Action of aldehydes on 2-hydroxy-4-amino benzoic acid II. To a solution of 2-hydroxy-4-amino benzoic acid (0.1 mol) II in absolute ethanol (20 ml), 2 drops of triethylamine and (0.1 mol) aldehyde were added. The reaction mixture was refluxed for 6 hrs, cooled and the precipitate that formed was filtered and crystallized from the proper solvent to give $\mathbf{III_a}$ and $\mathbf{III_b}$.

Downloaded At: 15:25 29 January 2011

TABLE I
Physical constants of analytical data of new compounds

	4	S	71.78	-			Analysis calc./found	alc./found	
Compound	M.F.	of crystallization	Y ield %	Formula mol. wt.	၁	н	z	s	<u>a</u>
Ш. 195	195	Ethanol	88	C ₁₅ H ₁₃ NO ₄ 271	66.42 66.44	4.80	5.17		
III	158	Ethanol + water	08	C ₁₂ H ₉ NSO ₃ 247	58.30 58.32	3.64	5.67 5.69	12.96 12.95	
IV _a	over 290	Ethyl acetate + pet. ether	92	$C_{14}H_{16}NSPO_6$ 357	47.06 47.03	4.48	3.92 3.91	8.96 8.93	8.68
IV _b	over 290	Ethanol + pet. ether	70	C ₁₆ H ₂₀ NSPO ₆ 385	49.87 49.90	5.20 5.21	3.64	8.31	8.05 8.02
>	140	Ethanol	75	$C_{14}H_{12}NS_3PO_2$	47.59 47.60	3.40 3.42	3.97 3.98	27.20 27.21	8.78
V _b	150	Ethanol	70	C ₁₃ H ₁₀ NS ₄ PO 355	43.94 43.92	2.82	3.94 3.93	36.06 36.03	8.73
»	195	Ethanol + water	09	C ₁₉ H ₁₄ NS ₄ PO ₂ 447	51.01 50.99	3.13	3.13 3.10	28.64 28.65	6.94
۸	169	Ethyl acetate + pet. ether	70	C ₁₈ H ₁₂ NS ₅ PO 449	48.11 48.09	2.67 2.66	3.12	35.64 35.63	6.90

General procedure for the reactions of III_b with DMP and DEP. A mixture of III_b (0.005 mol) and DMP or DEP (0.05 ml) was heated at 100°C for 12 hrs. After removal of the volatile materials in vacuo, the residual substances were collected and recrystallized from the proper solvent to give the adducts IV_a and IV_b respectively.

General procedure for the reactions of II and III_b with I_a and I_b. 0.01 mole of the starting compound and 0.01 mole of I_a (or I_b) was refluxed in 10 ml of dry toluene at 110° C with stirring until no more of the starting material could be detected (TLC). After cooling to room temperature the excess of I_a (or I_b) was filtered off. Then the reaction mixture was evaporated on silica gel column arising ether/light petroleum as eluant. The physical data are summarized in Table I.

REFERENCES

- B. S. Pedersen, S. Scheibye, N. H. Nilsson and S.-O. Lawesson, Bull. Soc. Chem. Belg., 87, 223 (1978).
- B. S. Pedersen, S. Scheibye, K. Clausen and S.-O. Lawesson, Bull. Soc. Chim. Belg., 87, 293 (1978).
- R. Shabana, S. Scheibye, K. Clausen, S. O. Olesen and S.-O. Lawesson, Nouv. J. Chim., 4, 47 (1980).
- 4. B. S. Pedersen and S.-O. Lawesson, Tetrahedron, 35, 2433 (1979).
- 5. R. Shabana, J. B. Rasmussen, S. O. Olesen and S.-D. Lawesson, Tetrahedron, 36, 3047 (1980).
- A. A. El-Barbary, S. Scheibye, S.-O. Lawesson and H. Fritz, Acta. Chem. Scand. B., 34, 597 (1980).
- 7. A. A. El-Barbary and S.-O. Lawesson, Tetrahedron, Vol. 37, No. 15, pp. 2641-2646 (1981).
- 8. L. J. Bellamy, "The Infrared Spectra of Complex Molecules," John Willy, New York, p. 311 (1964).
- 9. F. Ramirez, O. P. Madan and S. Heller, J. Am. Chem. Soc., 87, 731 (1965).
- 10. A. R. Stiles, W. E. Vaughan and F. F. Rust, J. Am. Chem. Soc., 80, 714 (1958).
- 11. T. S. Hafez and A. A. Fahmy, Phosphorus and Sulfur, Vol. 37, pp. 129-132 (1988).
- 12. A. H. Ford Moore and J. Perry, Organic Syntheses, 31, 111 (1951).
- K. A. Jorgensen, A. B. G. Gnattas and S.-O. Lawesson, *Tetrahedron*, Vol. 38, No. 9, pp. 1163–1168 (1982).
- 14. M. Yokoyama, Y. Hasegawa, H. Hatanaka, Y. Kawrazoe and T. Imamoto, Synthesis, 827 (1984).